Abstract
BackgroundGrowth Factor Receptor-bound 2 (GRB2) plays a crucial role in regulation of cellular function including proliferation and differentiation, and we previously identified GRB2 as promoting HSCs (HSCs) proliferation. However, the underlying mechanisms that are involving in the regulation of GRB2 in hepatic fibrogenesis remain unknown. MethodsIn the present study, we tested the function of GRB2 in hepatic fibrosis. Hepatic fibrosis was induced by subcutaneous CCl4 administration at a dose of 3mL/kg in rats. The rat HSC cell line HSC-T6 were cultured for proliferation investigation by CCK-8 and BrdU incorporation method. The levels of GRB2, HMGB1, PI3K/AKT, COL1A1 and α-SMA were analyzed by western blot or real-time PCR. Resultsshowed that the expression of GRB2 and HMGB1 was obviously increased in liver tissues of hepatic fibrosis rats accompanied by up-regulation of COL1A1 and α-SMA. In cultured HSCs, application of exogenous HMGB1 induced cell proliferation and cell proliferation rate concomitantly with up-regulation of GRB2 expression and PI3K/AKT phosphorylation. The effects of HMGB1-induced proliferation of HSCs and up-regulation of COL1A1 and α-SMA were abolished by GRB2 siRNA. HMGB1-induced proliferation of HSCs and up-regulation of COL1A1 and α-SMA was reversed in the presence of LY294002, an inhibitor of PI3K inhibitor. ConclusionsThese findings suggest that GRB2 plays an important role in CCl4-induced hepatic fibrosis by regulating HSCs’ function, and up-regulation of GRB2 induced by HMGB1 is mediated via the PI3K/AKT pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.