Abstract

The process of oxidation of a copper surface coated by a layer of graphene in water-saturated air at 50 °C was studied where it was observed that oxidation started at the graphene edge and was complete after 24 h. Isotope labeling of the oxygen gas and water showed that the oxygen in the formed copper oxides originated from water and not from the oxygen in air for both Cu and graphene-coated Cu, and this has interesting potential implications for graphene as a protective coating for Cu in dry air conditions. We propose a reaction pathway where surface hydroxyl groups formed at graphene edges and defects induce the oxidation of Cu. DFT simulation shows that the binding energy between graphene and the oxidized Cu substrate is smaller than that for the bare Cu substrate, which facilitates delamination of the graphene. Using this process, dry transfer is demonstrated using poly(bisphenol A carbonate) (PC) as the support layer. The high quality of the transferred graphene is demonstrated from Raman maps, XPS, ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.