Abstract

Uptake of two synthetic organic contaminants (SOCs), trichloroethylene and trichlorobenzene, by one coal-based and one wood-based granular activated carbon (GAC), modified using liquid-phase oxidation (HNO3) and heat treatment in an inert atmosphere (N2), and by several different as-received GACs was compared. Carbons were characterized by elemental analysis, surface area and pore size distribution, water vapor adsorption, acid−base adsorption characteristics measured using the Boehm technique, and a mass titration/pH equilibration method to determine the pHpzc. The results of isotherm experiments with the surface-treated coal- and wood-based carbons indicated that carbon surface acidity played an important role on the adsorption of hydrophobic SOCs. It was found that increasing surface acidity increased the polarity of the surface and reduced adsorption of hydrophobic SOCs by GAC. However, no significant trend was evident for as-received carbons; their behavior differed significantly from surface-treated...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call