Abstract
In general, drought depresses nutrient uptake by the root and transport to the shoot due to a restricted transpiration rate, which may contribute to growth limitation under water deprivation. Moreover, water stress may also restrict the ability of plants to reduce and assimilate nitrogen through the inhibition of enzymes implicated in nitrogen metabolism. The assimilation of nitrogen has marked effects on plant productivity, biomass, and crop yield, and nitrogen deficiency leads to a decrease in structural components. Plants produce significant quantities of NH4 + through the reduction of NO3 − and photorespiration, which must be rapidly assimilated into nontoxic organic nitrogen compounds. The aim of the present work was to determine the response of reciprocal grafts made between one tomato tolerant cultivar (Lycopersicon esculentum), Zarina, and a more sensitive cultivar, Josefina, to nitrogen reduction and ammonium assimilation under water stress conditions. Our results show that when cv. Zarina (tolerant cultivar) was used as rootstock grafted with cv. Josefina (ZarxJos), these plants showed an improved N uptake and NO3 − assimilation, triggering a favorable physiological and growth response to water stress. On the other hand, when Zarina was used as the scion (JosxZar), these grafted plants showed an increase in the photorespiration cycle, which may generate amino acids and proteins and could explain their better growth under stress conditions. In conclusion, grafting improves N uptake or photorespiration, and increases leaf NO3 − photoassimilation in water stress experiments in tomato plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.