Abstract

Activator of G-protein signaling 3 (AGS3, also known as GPSM1) exhibits broad functional diversity and oscillates among different subcellular compartments in a regulated manner. AGS3 consists of a tetratricopeptide repeat (TPR) domain and a G-protein regulatory (GPR) domain. Here, we tested the hypothesis that phosphorylation of the AGS3 GPR domain regulates its subcellular distribution and functionality. In contrast to the cortical and/or diffuse non-homogeneous distribution of wild-type (WT) AGS3, an AGS3 construct lacking all 24 potential phosphorylation sites in the GPR domain localized to cytosolic puncta. This change in localization was revealed to be dependent upon phosphorylation of a single threonine amino acid (T602). The punctate distribution of AGS3-T602A was rescued by co-expression of Gαi and Gαo but not Gαs or Gαq Following treatment with alkaline phosphatase, both AGS3-T602A and WT AGS3 exhibited a gel shift in SDS-PAGE as compared to untreated WT AGS3, consistent with a loss of protein phosphorylation. The punctate distribution of AGS3-T602A was lost in an AGS3-A602T conversion mutant, but was still present upon T602 mutation to glutamate or aspartate. These results implicate dynamic phosphorylation as a discrete mechanism to regulate the subcellular distribution of AGS3 and associated functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.