Abstract

Intermittent hypoxia due to sleep apnea syndrome is associated with cardiovascular diseases. However, the precise mechanisms by which intermittent hypoxic stress accelerates cardiovascular diseases are largely unclear. The aim of this study was to investigate the role of gp91(phox)-containing NADPH oxidase in the development of left ventricular (LV) remodeling induced by intermittent hypoxic stress in mice. Male gp91(phox)-deficient (gp91(-/-)) mice (n = 26) and wild-type (n = 39) mice at 7-12 wk of age were exposed to intermittent hypoxia (30 s of 4.5-5.5% O(2) followed by 30 s of 21% O(2) for 8 h/day during daytime) or normoxia for 10 days. Mean blood pressure and LV systolic and diastolic function were not changed by intermittent hypoxia in wild-type or gp91(-/-) mice, although right ventricular systolic pressure tended to be increased. In wild-type mice, intermittent hypoxic stress significantly increased the diameter of cardiomyocytes and interstitial fibrosis in LV myocardium. Furthermore, intermittent hypoxic stress increased superoxide production, 4-hydroxy-2-nonenal protein, TNF-alpha and transforming growth factor-beta mRNA, and NF-kappaB binding activity in wild-type, but not gp91(-/-), mice. These results suggest that gp91(phox)-containing NADPH oxidase plays a crucial role in the pathophysiology of intermittent hypoxia-induced LV remodeling through an increase of oxidative stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.