Abstract

Epithelial ovarian cancer, which accounts for 80-90% of all ovarian cancers, is the most common cause of death from gynecological malignancies and is believed to originate from the ovarian surface epithelium. In the present study we investigated the expression of GnRH and its receptor in human ovarian surface epithelial (hOSE) cells and provided novel evidence that GnRH may have antiproliferative effects in this tissue. Using RT-PCR and Southern blot analysis, we cloned the GnRH and GnRH receptor (GnRHR) in hOSE cells. Sequence analysis revealed that GnRH and its receptor have sequences identical to those found in the hypothalamus and pituitary, respectively. To address whether GnRH regulates its own and receptor messenger RNA (mRNA), the cells were treated with different concentrations of the GnRH agonist (D-Ala6)-GnRH. Expression levels of GnRH and its receptor were investigated using quantitative and competitive RT-PCR, respectively. Interestingly, a biphasic effect was observed for the GnRH and GnRHR mRNA levels. High concentrations of the GnRH agonist (10(-7) and 10(-9) M) decreased GnRH and GnRHR mRNA levels, whereas a low concentration (10(-11) M) resulted in up-regulation of GnRH and receptor mRNA levels. Treatment with the GnRH antagonist, antide, prevented the biphasic effects of the GnRH agonist in hOSE cells, confirming the specificity of the response. Furthermore, to investigate the physiological significance, we studied receptor-mediated growth regulatory effects of GnRH in human ovarian surface epithelial cells. The cells were treated with GnRH analogs, and the proliferative index of cells was measured using a [3H]thymidine incorporation assay. (D-Ala6)-GnRH had a direct inhibitory effect on the growth of hOSE cells in a time- and dose-dependent manner. This antiproliferative effect of the GnRH agonist was receptor mediated, as cotreatment of hOSE cells with antide abolished the growth inhibitory effects of the GnRH agonist. The results strongly suggest that GnRH can act as an autocrine/paracrine regulator in hOSE cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call