Abstract

In the ice-laden polar oceans, water temperatures of — 2 °C are common. This temperature is 1.1 °C below the equilibrium freezing point ( — 0.9 °C) of the fishes’ body fluids. Avoidance of freezing in these environments has been linked to the presence of unusual blood peptides and glycopeptides. These molecules have molecular masses ranging from 2.5 to 20 kDa and are viewed as having antifreeze properties because they lower the freezing point of water by a non-colligative process. A 2% solution of antifreeze has a freezing point of — 1.2 °C and ice formed in their presence melts at — 0.02 °C. Measurements of antifreeze concentrations in ice indicate that these molecules, unlike other proteins of similar size and conformation, are incorporated into the solid phase during freezing and adsorb to it. Adsorption of the antifreezes to ice appears to inhibit growth along the preferred axes ( a -axes) by raising the curvature of the growth steps on the basal plane. At temperatures below — 1.2 °C, crystal growth occurs in the form of long spicules whose axes are parallel to the c -axis, the non-preferred axis of growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.