Abstract
The role played by glucose in providing energy for acid formation was studied in isolated gastric glands from rabbit. The widely-used inhibitors of glycolysis, iodoacetic acid and iodoacetamide were found to inhibit glucose oxidation as well as the indicators of acid formation, respiration and accumulation of aminopyrine. However, the potent inhibition of acid formation was found to involve a nonspecific mechanism other than the simple inhibition of glycolysis. An alternative approach involved use of the glucose transport inhibitor, phloretin. Phloretin blocked glucose oxidation and also inhibited functional responses. Acid formation was restored easily by the addition of pyruvate or various other oxidizable substrates. Measurement of lactate formation in the absence of exogenous glucose showed that the gastric glands contain very little glycogen. Addition of external glucose resulted in a 10-fold increase in lactate formation and this rate was stimulated further by histamine and rotenone. Rotenone also inhibited both respiration and aminopyrine accumulation; however, the inhibition was not complete. Phloretin treatment resulted in total inhibition of the residual aminopyrine accumulation after rotenone treatment. The results are interpreted to indicate that gastric glands are dependent almost totally on external substrate supply to support acid formation; and, that while anaerobic glucose metabolism can sustain a very low level of acid formation, the major role of glucose is to yield pyruvate equivalents for subsequent oxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.