Abstract

The microstructure evolution of confined glucose solutions in silica gels can provide insights into the effect of sugars in protecting living organisms under extreme dehydration conditions. Aqueous silica gels with relatively small pore sizes capable of deforming under changes in environmental conditions are used here as a model system. In situ monitoring of the dehydration process – with and without the presence of sugar molecules – by optical photography, gravimetric measurements, small-angle neutron scattering, and atomic force microscopy reveals that sugar plays a crucial role in the mechanics and protection of the gel. In the absence of sugar, dehydration leads to considerable degradation, whereas the incorporation of large doses of glucose maintains the stability and robustness of the structure. A model is proposed to explain the time dependence of the dehydration process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.