Abstract

Glucose catabolism by glycolysis and the Krebs cycle was examined in the isolated rabbit cornea incubated with [6-14C]glucose. The production of [14C]lactate and 14CO2 from this substrate provided minimal values for the fluxes through these pathways since the tissue was in metabolic steady state but not isotopic steady state during the 40-min incubation. The specific activity of lactate under these conditions was one-third of that for [6-14C]glucose, and label dilution by exchange with unlabeled alanine was minimal, suggesting that glycogen degradation was primarily responsible for this dilution of label in the Embden-Meyerhof pathway. In addition, considerable label accumulation was found in glutamate and aspartate. Calculations revealed that these endogenous amino acid pools were not isotopically equilibrated after the incubation period, suggesting that they were responsible for the isotopic nonsteady state by exchange dilution through transaminase reactions with labeled intermediates. An estimate of glucose oxidation by the Krebs cycle, which was corrected for label dilution by exchange, indicated that glucose could account for most of the measured corneal oxygen consumption that was coupled to oxidative phosphorylation. A minor component of this respiration could not be accounted for by glucose or glycogen oxidation. Additional experiments suggested that endogenous fatty acid oxidation was probably also active under these conditions. Finally, reciprocal changes in plasma membrane Na+-K+-ATPase activity induced by ouabain and nystatin were found to concomitantly alter oxygen consumption rates and [14C]lactate production from [6-14C]glucose. These results demonstrated the capacity for regulating glycolysis and the Krebs cycle in response to changing energy demands in the cornea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.