Abstract
Epidermal growth factor (EGF) signaling and Hedgehog (HH) signaling are both involved in prostate cancer (PCa) progression, yet the mechanisms through which these two pathways are synergistically linked require elucidation. In the present study, we aimed to ascertain how EGF and the HH signaling transcription factor GLI-1 are linked in prostate cancer invasiveness. ARCaP human prostate cancer cells, which included ARCaPE and ARCaPM cells, were used as a model in the present study. The expression of EGF receptor (EGFR) and the HH signaling transcriptional factor GLI-1 were detected in ARCaPE cells by immunofluorescence, and the ARCaPE cells were treated with human recombinant EGF protein (hrEGF) for 4 consecutive days invitro. Transwell invasion assays were performed in the ARCaPE cells following treatment with DMSO (vehicle control), hrEGF, GATN61 (GLI-1-specific inhibitor), hrEGF plus GANT61 and in the ARCaPM cells. The expression of phosphorylated extracellular signal regulated kinase (p-ERK), total ERK and GLI-1 was detected by western blotting in ARCaPE cells at different time-points following treatment with hrEGF. The expression of EGFR and GLI-1 was detected in ARCaPE cells, which exhibited a cobblestone-like morphology, while after treatment with hrEGF, the cell morphology was altered to a spindle-shaped mesenchymal cell morphology. Transwell invasion assays demonstrated that hrEGF dramatically enhanced the invasive capability of the ARCaPE cells (p<0.05). Additionally, western blot assay demonstrated that the expression levels of p-ERK and GLI-1 in ARCaPE cells increased in a time-dependent manner after treatment with hrEGF (p<0.05); however, the expression levels of total ERK in the cells remained relatively unchanged. It also demonstrated that the GLI-1 inhibitor GANT61 could reverse the enhanced invasive effect induced by EGF in ARCaPE cells (p<0.05). Our preliminary invitro study showed that EGF signaling may increase the invasive capability of ARCaPE human prostate cancer cells via upregulation of p-ERK and the HH signaling transcriptional factor GLI-1. Additionally, this enhanced cell invasive effect was reversed by a GLI-1-specific inhibitor invitro. Consequently, it indicates that both EGF and HH signaling are synergistically involved in the progression of human prostate cancer ARCaP cells, and GlI-1 may be one of the important effectors, which is activated by EGF downstream signaling, to promote the invasiveness of ARCaPE prostate cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.