Abstract

The Microtubule-binding repeat region (MTBR) of Tau has been studied extensively due to its pathological implications in neurodegenerative diseases like Alzheimer's disease. The pathological property of MTBR is mainly due to the R3 repeat's high propensity for self-aggregation, highlighting the critical molecular grammar of the repeat. Utilizing the R1R3 construct (WT) and its G326E mutant (EE), we determine the distinct characteristics of various peptide segments that modulate the aggregation propensity of the R3 repeat using NMR spectroscopy. Through time-dependent experiments, we have identified 317KVTSKCGS324 in R3 repeat as the aggregation initiating motif (AIM) due to its role at the initial stages of aggregation. The G326E mutation induces changes in conformation and dynamics at the AIM, thereby effectively abrogating the aggregation propensity of the R1R3 construct. We further corroborate our findings through MD simulations and propose that AIM is a robust site of interest for tauopathy drug design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call