Abstract

BackgroundSecondary structures in 5′ UTR of mRNAs play a critical role in regulating protein synthesis. Though studies have indicated the role of secondary structure G-quadruplex in translational regulation, position-specific effect of G-quadruplex in naturally occurring mRNAs is still not understood. As a pre-initiation complex recognises 5′ cap of the mRNA and scans along the untranslated region (UTR) before initiating translation, the presence of G-quadruplex in 5′ region may have a significant contribution in regulating translation. Here, we investigate the role of G-quadruplex located at the 5′ end of an mRNA. MethodsBiophysical characterisation of putative G-quadruplexes was performed using UV and CD spectroscopy. Functional implication of G-quadruplex in the context of their location was assessed in cellulo using qRT-PCR and dual luciferase assay system. ResultsPG4 sequences in 5′ UTR of AKT interacting protein (AKTIP), cathepsin B (CTSB) and forkhead box E3 (FOXE3) mRNAs form G-quadruplex whereas it is unable to form G-quadruplex in apolipoprotein A-I binding protein (APOA1BP). Our results demonstrated diverse roles of G-quadruplex located at 5′ end of mRNAs. Though G-quadruplex in AKTIP and CTSB mRNA act as inhibitory modules, it activates translation in FOXE3 mRNA. ConclusionsOur works suggests that G-quadruplex present at the 5′ terminal of an mRNA behaves differently in a different gene context. It can activate or inhibit gene expression. General significanceThis study demonstrated that it is difficult to predict the role of G-quadruplex on the basis of its position in 5′ UTR. The neighbouring nucleotide sequence, the intracellular milieu and the interacting partners might render diverse functions to this secondary structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call