Abstract

Topologically interlocking material (TIM) systems offer adjustable bending stiffness controlled by external pre-stress, as shown in previous studies. This study focuses on a specific TIM system comprised of truncated tetrahedral particles interconnected via tensioned wires. The fabrication process involves weaving nylon wires through 3D printed truncated tetrahedrons that have longitudinal and latitudinal through-holes. By varying the tension applied to the wires, one can systematically control the overall bending stiffness of the TIM system. We change the surface friction and the contact angle between adjacent particles at a fixed wire tension, to study experimentally how they affect the system’s bending response. We inform experiments with Level Set Discrete Element Method (LS-DEM) simulations, to correlate surface friction and contact area changes with the system’s bending modulus. The numerical model is shown to be predictive and could be used in the future to evaluate designs of TIMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.