Abstract

The present work is carried out to understand the effect of free surface on liquid velocity distribution, dynamics and liquid phase mixing in a shallow basic oxygen furnace (BOF). Three‐dimensional/transient Euler–Lagrange (EL) without/with volume‐of‐fluid (VOF) simulations of dispersed gas–liquid flow in a scaled‐down model of the BOF were performed. For lower H/D ratios, EL simulations performed with no‐slip and free‐slip boundary conditions led to oscillatory plume behavior and higher liquid velocity regions which in turn led to lower mixing time. In contrast, EL + VOF simulations led to reduced meandering motion of bubble plumes and lower liquid velocities resulting in higher mixing times. Interestingly, the mixing time predicted using EL + VOF approach was found to be in a good agreement with the measurements. The results presented in this work show that free surface has a significant effect on dynamics of gas–liquid flow and liquid phase mixing for shallow vessels with H/D ≤ 0.5. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3582–3598, 2017

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call