Abstract

Hydraulic fracturing in low-permeability hydrocarbon reservoirs creates/reactivates a fracture network leading to microseismic events. We have developed a simplified model of the evolution of the microseismic cloud based on the opening of a planar fracture cavity and its effect on elastic stresses and pore pressure diffusion during fluid injection in hydraulic fracturing treatments. Using a material balance equation, we compute the crack tip propagation over time assuming that the hydraulic fracture is shaped as a single penny-shaped cavity. Results indicate that in low-permeability formations, the crack tip propagates much faster than the pore pressure diffusion front thereby triggering the microseismic events farthest from the injection domain at any given time during fluid injection. We use the crack tip propagation to explain the triggering front observed in distance versus time plots of published microseismic data examples from hydraulic fracturing treatments of low-permeability hydrocarbon reservoirs. We conclude that attributing the location of the microseismic triggering front purely to pore pressure diffusion from the injection point may lead to incorrect estimates of the hydraulic diffusivity by multiple orders of magnitude for low-permeability formations. Moreover, the opening of the fracture cavity creates stress shadow zones perpendicular to the principal fracture walls in which microseismic triggering due to the elastic stress perturbations is suppressed. Microseismic triggering in this stress shadow region may be attributed mainly to pore pressure diffusion. We use the width, instead of the longest size, of the microseismic cloud to obtain an enhanced diffusivity measure, which may be useful for subsequent production simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.