Abstract

Extreme-ultraviolet pulses of attosecond duration carrying orbital angular momentum (OAM) can be produced by spectrally filtering vortex high harmonics generated in a gas medium. Here we reveal that fractional high harmonics (FHHs) with non-integer OAM generated by a short duration Laguerre-Gaussian laser beam are origins for the change of helical attosecond pulse train (APT) with azimuthal angle. We show that these harmonics have gap and minimum structures in the annular intensity profile and discontinue phase distribution along azimuthal angle. And each FHH can be expressed as a superposition of OAM modes with integer topological charges. Features of FHH can be identified by coherently combining selected OAM modes. We also uncover that these features are formed after FHH is propagated in gas medium and in vacuum. We finally demonstrate that the generation of FHHs and the dependence of helical APTs on azimuthal angle are changed by varying the macroscopic condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call