Abstract

Nutrient deficiencies are a major problem that is prone to affect millions of people around the globe. Biofortification, a process of enriching nutrients in staple food crops is an effective method to tackle this malnutrition-associated disorder. Tomato (Solanum lycopersicum) is a globally consumed crop and therefore is a suitable candidate for biofortification. Many plant growth-promoting bacteria are reported to have the ability to enhance nutrient content in plants. In the present study, we have investigated the ability of two bacterial consortia (consortia-1 –co-culturing Lysinibacillus sp. strain VITKC-5 and Acinetobacter Sp. strain VITKC_6; and consortia-2 –co-culturing Lysinibacillus sp. strain VITKC-5 and Enterobacter sp. strain VITVLC-4) in the nutrient enrichment of tomato fruits. The results were then correlated with the elevated expression of nutrient transporter genes. Furthermore, the effect of these bacterial formulations on the indigenous microbiome has also been evaluated through metagenomic analysis. The application of bacterial formulations significantly improved the nutrient content when compared to the control (untreated) group. These findings advocate that PGPB-assisted biofortification has the potential to alleviate nutrient deficiency in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.