Abstract

To investigate the role of the forkhead/Fox transcription factor 2 (Foxc2) over-expression in regulating osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by Wnt-β-catenin signaling pathways in vitro so as to provide the experimental basis for repairing osteonecrosis of the femoral head. The recombinant lentivirus carrying green fluorescent protein (group A) or Foxc2 (group B) were used to transfect the fifth generation rabbit BMSCs, and untransfected BMSCs served as a control (group C). The cell viability was measured with water soluble tetrazolium-1 (WST-1) regent at 72 hours after transfection. After 2 weeks of transfection, the expression of β-catenin in BMSCs was detected by real time fluorescence quantitative PCR, Western blot, and immunofluorescence staining. Meanwhile, the β-catenin inhibitors XAV-939 (0, 0.1, and 1.0 μmol/L) was added in group B; at 2 weeks after osteogenic and adipogenic induction, the gene and protein expressions of collagen type I (COL I), osteocalcin (OCN), and peroxisome proliferator activated receptor gamma 2 (PPARγ-2) were detected by real time PCR and Western blot. WST-1 results showed that the cell viability of group B (130.85%±0.15%) was significantly higher than that of group A (100.45%±0.35%) (t=7.500, P=0.004) at 72 hours after transfection. At 2 weeks after transfection, the gene and protein expressions of β-catenin in group B were significantly higher than those in group A (P<0.01). After XAV-939 was added in group B, the mRNA and protein expressions of OCN and COL I gradually decreased; the mRNA and protein expressions of PPARγ-2 significantly increased (P<0.05), showing a dose-dependent manner. The over-expression of Foxc2 gene in BMSCs may promote osteogenic differentiation by Wnt-β-catenin signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call