Abstract

Ergosterol is an important component of the fungal cell membrane and represents an effective target of chemical pesticides. However, the current understanding of ergosterol biosynthesis in the soybean root rot pathogen, Fusarium oxysporum, remains limited. In addition, the regular use of fungicides that inhibit ergosterol synthesis will seriously harm the ecological environment and human health. Bacillus subtilis is gradually replacing chemical control as a safe and effective biological agent, in order to investigate its effect on ergosterol synthesis of F. oxysporum, we verified the biological function of the FoERG3 gene of F. oxysporum by constructing knockout mutants. The results showed that knocking out FoERG3 blocked ergosterol biosynthesis, restricted mycelial growth, and increased the sensitivity to external stressors (NaCl, D-sorbitol, Congo red, and H2O2). The increased permeability of the cell membrane promoted increased extracellular K+ levels and decreased mitochondrial cytochrome C contents. Treatment with suspension of B. subtilis HSY21 cells resulted in similar damage as observed when treating FoERG3-knockout F. oxysporum cells with ergosterol, which was characterised deformity and swelling of the mycelium surface; increased membrane permeability; decreased pathogenicity to soybeans; and significantly decreased activities of cellulase, β-glucosidase, amylase, and pectin-methyl galactosylase. Notably, deleting FoERG3 resulted in a significant lag in the defense-response time of soybeans. Our results suggest that FoERG3 strongly influences the virulence of F. oxysporum and may be used as a potential antimicrobial target by B. subtilis HSY21 to inhibit ergosterol synthesis, which support for use of B. subtilis as a biological control agent for protecting against F. oxysporum infectiom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.