Abstract

Cell motility and morphogenesis are regulated by a balance between formation and disassembly of stress fibers and focal adhesions. To understand the mechanisms underlying these cellular responses in angiogenesis, we studied the Rho family protein-driven pathways in FGF-2-induced chemotaxis and capillary morphogenesis of murine brain capillary endothelial cell line, IBE cells. Cells seeded onto fibronectin-coated surface migrated toward FGF-2. Expression of dominant negative Rho A (DNRho) or kinase-dead p21-activated kinase 1 (KDPAK1), or treatment with Y27632 inhibited chemotaxis in association with the lack of FGF-2-induced decrease in focal adhesions. On Matrigel, DNRho and Y27632 induced FGF-2-independent capillary morphogenesis despite loss of stress fiber formation. KDPAK1 cells formed stress fibers and showed capillary morphogenesis in response to FGF-2. Increase in focal adhesions was closely associated with capillary morphogenesis. Our results suggest that formation or disassembly of focal adhesions seems to determine the motility or morphogenesis of endothelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.