Abstract

The origins of fluorescence quenching by Hg(II) ion chelation and fluorescence enhancement by Zn(II) ion chelation to a PET sensor are investigated. Specifically, the fluorescence quenching and enhancing mechanisms associated with the ligand ADPA (N-(9-anthracenylmethyl)-N-(2-pyridinylmethyl)-2-pyridinemethanamine), protonated ADPA and metal bound (Zn(II) and Hg(II)) ADPA are studied via density functional theory (DFT) and time-dependent DFT (TDDFT) methods. The study found that a structural change in the excited state of ADPA induces reordering of the frontier molecular orbitals, and the S1 → S0 transition becomes a charge transfer transition from the fluorophore to the tertiary nitrogen of the dipicolylamine (DPA) unit, which is forbidden. Protonation on the tertiary amine or chelation of Zn(II) prevents such changes, and the HOMO-LUMO transition is contained within the fluorophore. Therefore, fluorescence is restored. The chelation of Hg(II), on the other hand, promotes extensive interaction between the Hg(II) ion and the fluorophore, which is reflected in the short Hg(II)-fluorophore distance (3.11 Å). A noticeable structural change upon the S0 → S1 transition is observed in the Hg(II)-ADPA system as well, where the resulting S1 → S0 transition becomes a charge transfer transition from mercury to the fluorophore and the fluorescence is thus quenched. Therefore, the present DFT/TDDFT calculations reproduce the fluorescence on-off behavior associated with the entire ADPA family of complexes, which illustrates that the combination of DFT and TDDFT calculations, including excited state geometry optimization, can be a valuable tool to uncover the detailed fluorescence sensing mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.