Abstract

AbstractHerbivores and detritus consumers (i.e. microbial decomposers and invertebrate and vertebrate detritivores) are pivotal components of trophic food webs and thus play a paramount role in the trophic transference and turnover of producer‐fixed carbon. Hence, elucidating patterns in carbon flux through these first‐order consumers is important to understand the nature and controls of carbon flow in ecosystems. Here, using the largest literature compilation to date, I show that, in contrast with the current belief, aquatic herbivores accumulate on average three times as much biomass as do terrestrial herbivores for a given level of primary production and, as a consequence, turn over the ingested carbon only slightly faster than do terrestrial herbivores. Conversely, aquatic detritus consumers generally accumulate a much lower biomass (i.e. over ten times lower) than their terrestrial counterparts for a given level of primary production and, thus, they turn over the ingested carbon much more quickly (i.e. over ten times faster). Because the detrital pathway generally dominates the trophic flow of carbon in both aquatic and terrestrial ecosystems, carbon also tends to flow through the total compartment of first order‐consumers (both herbivores and detritus consumers) at a much faster rate in aquatic than in terrestrial ecosystems. Thus, aquatic systems, because of faster carbon recycling rates through their basal and first‐order levels of the food chain, appear to have a lower capacity than do terrestrial systems for retaining carbon under natural or anthropogenic increases in photosynthetic fixation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.