Abstract
<p>This paper explores various approaches to enhance federated learning (FL) through the utilization of edge computing. Three techniques, namely Edge-Fed, hybrid federated learning at edge devices, and cluster federated learning, are investigated. The Edge-Fed approach implements the computational and communication challenges faced by mobile devices in FL by offloading calculations to edge servers. It introduces a network architecture comprising a central cloud server, an edge server, and IoT devices, enabling local aggregations and reducing global communication frequency. Edge-Fed offers benefits such as reduced computational costs, faster training, and decreased bandwidth requirements. Hybrid federated learning at edge devices aims to optimize FL in multi-access edge computing (MAEC) systems. Cluster federated learning introduces a cluster-based hierarchical aggregation system to enhance FL performance. The paper explores the applications of these techniques in various domains, including smart cities, vehicular networks, healthcare, cybersecurity, natural language processing, autonomous vehicles and smart homes. The combination of edge computing (EC) and federated learning (FL) is a promising technique gaining popularity across many applications. EC brings cloud computing services closer to data sources, further enhancing FL. The integration of FL and EC offers potential benefits in terms of collaborative learning.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.