Abstract

The correlation between the content and morphology of Fe2O3 and the yields of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) was studied in this work. Three fly ash surrogates containing 1%, 2.5%, and 4% of Fe2O3 were prepared and their effects on PCDD/Fs formation were investigated and compared to our previously studied 5% iron oxide sample using 2-monochlorophenol precursor model. As the intermediate of PCDD/Fs, environmentally persistent free radical formation propensity was correlated with the PCDD/Fs formation yields for different iron oxide samples. PCDD/Fs yield increases exponentially with the increasing iron content under pyrolytic conditions. On the contrary, low iron oxide content promotes oxidation and lowers yields of PCDD/Fs. Changing iron oxide clusters' morphology (crystallinity and cluster size) affects the mechanism of PCDD/Fs formation – on larger crystallites, a bidentate chemisorption of precursor is preferred leading to lower chlorinated congeners, while smaller clusters promote formation of PCDFs through mixed monodentate-bidentate surface species, resulting in formation of congeners with 1 chlorine more. This study further confirms the propensity of iron oxide to predominantly form PCDFs. The iron content also defines PCDDs:PCDFs ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.