Abstract

Platelet activation in response to dual stimulation with collagen and thrombin results in the formation of a subpopulation of activated platelets known as coated platelets. Coated platelets are characterized by high surface levels of alpha-granule proteins and phosphatidylserine, which support the assembly of procoagulant protein complexes. Using murine models, we tested the hypothesis that the collagen receptor-associated molecule FcRgamma and the transglutaminase factor XIIIA are required for the formation of coated platelets. Following dual stimulation with the collagen receptor agonist convulxin and thrombin, 68% of platelets from C57BL/6 mice acquired the coated platelet phenotype, defined by high surface levels of fibrinogen and von Willebrand factor and decreased binding of the alphaIIbbeta3 activation-dependent antibody PE-JON/A. In FcRgamma-/- mice, only 10% of platelets became "coated" after dual stimulation with convulxin plus thrombin (P < .05 vs C57BL/6 platelets). Decreased coated platelet formation in FcRgamma-/- platelets was accompanied by decreased annexin V binding (P < .01) and decreased platelet procoagulant activity (P < .05). Platelets from FXIIIA-/- mice did not differ from control platelets in coated platelet formation or annexin V binding. We conclude that FcRgamma, but not factor XIIIA, is essential for formation of highly procoagulant coated platelets following dual stimulation with collagen and thrombin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.