Abstract

The concept of complexity for dynamical spherically symmetric dissipative self-gravitating configuration (Herrera et al. Phys. Rev. D, 98, 104059 (2018). doi:10.1103/PhysRevD.98.104059) is generalized in the scenario of modified Gauss–Bonnet gravity. For this purpose, a spherically symmetric fluid with locally anisotropic, dissipative, and non-dissipative configurations is considered. We choose the same complexity factor for the structure as we did for the static case, while we consider the homologous condition for the simplest pattern of evolution. In this approach, we formulate structure scalars that demonstrate the essential properties of the system. A fluid distribution that fulfills the vanishing complexity constraint and proceeds homologously corresponds to isotropic, geodesic, homogeneous, and shear-free fluid. In the dissipative case, the fluid is still geodesic but it is shearing, and there is a wide range of solutions. In the last, the stability of vanishing complexity is examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.