Abstract

1 The role of the uptake and release of agonist from extraneuronal sites in the termination of responses of rabbit aortic strips to amines was studied. 2 Strips were contracted with adrenaline or noradrenaline and after response plateau was reached, the muscle chambers were washed free of agonist and the relaxation in Krebs solution recorded. After inhibition of catechol-O-methyl-transferase, monoamine oxidase and neuronal uptake the relaxation rate was greatly prolonged. Evidence is provided that this very slow relaxation resulted from the accumulation of intact amine at extraneuronal sites during exposure to the agonist and its subsequent release past receptors due to a reversal of the concentration gradient after washout. 3 Pretreatment with the haloalkylamine, GD-131 (N-cyclohexylmethyl-N-ethyl-beta-chloroethylamine), an inhibitor of extraneuronal uptake, returned the slow relaxation rate after enzyme inhibition towards that of control strips. By blocking the extraneuronal transport of amines their accumulation at intracellular loci after enzyme inhibition was prevented. 4 The effects of GD-131 and 17beta-oestradiol on the relaxation rate of untreated strips contracted by adrenaline and noradrenaline confirmed that extraneuronal uptake to sites of enzymatic activity is the major mechanism terminating their action. 5 Inactivation of extraneuronal transport sites by GD-131 was prevented by protecting them with 17beta-oestradiol or normetanephrine during exposure to the haloalkylamine, pointing to a common site of action of these agents on a specific carrier system for amines. 6 Evidence is presented that the relaxation from contractions induced by histamine and 5-hydroxytryptamine also involves extraneuronal accumulation and release, probably by an uptake process which is identical to the one for catecholamines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call