Abstract

Microbial remediation provides a promising avenue for the management and restoration of heavy metal-contaminated soils. Microorganisms in soils usually exist within unsaturated biofilms, however, their response to heavy metals is still limited compared to saturated biofilms. This work investigated the Cr(VI) immobilization by Shewanella putrefaciens CN32 unsaturated biofilms, and explored the underlying mechanisms of Cr(VI) complexation. Results reveal a dose-dependent toxicity of Cr(VI) to the growth of the unsaturated biofilms. During the early growth stage, the Cr(VI) addition stimulated more extracellular polymeric substances (EPS) production. In the meantime, the EPS were demonstrated to be the primary components for Cr(VI) immobilization, which accounted for more than 60% of the total adsorbed Cr(VI). The Fourier transform infrared spectra and X-ray photoelectron spectra corroborated that the binding sites for immobilizing Cr(VI) were hydroxyl, carboxyl, phosphoryl and amino functional groups of the proteins and polysaccharides in EPS. However, for the starved unsaturated biofilms, EPS were depleted and the EPS-bound Cr(VI) were released, which caused approximately 60% of the adsorbed Cr(VI) onto cell components and further aggravated the Cr(VI) stress to cells. This work extends our understanding about the Cr(VI) immobilization by unsaturated biofilms, and provides useful information for remediation of heavy metal-contaminated soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call