Abstract

Activation of ribosomal protein S6 kinase by epidermal growth factor (EGF), insulin, and insulin-like growth factor 1 (IGF1) was studied in the human mammary tumor cell line ZR-75-1 in isotonic buffers. In contrast to growth factor-dependent S6 phosphorylation which is strongly dependent on extracellular pH (Chambard, J. C., and J. Pouyssegur. 1986. Exp. Cell Res. 164:282-294.) preincubation of cells in buffers with different pH values ranging from 7.5 to 6.5 had no effect on basal or EGF-stimulated S6 kinase activity. Replacement of extracellular Na+ with choline or replacement of extracellular Ca++ with EGTA also did not inhibit stimulation of S6 kinase by EGF. When intracellular Ca++ was buffered with the permeable Ca++ chelator quin2, EGF stimulation was reduced 50%. A similar inhibition of the EGF response was observed when cells were incubated in buffers with high K+ concentrations or in the presence of the K+ ionophore valinomycin. Insulin and IGF1 stimulation of S6 kinase were also inhibited by high K+ concentrations and by buffering intracellular Ca++. In contrast to the responses to EGF, insulin- and IGF1-activation of S6 kinase was enhanced when glucose was present and depended on the presence of bicarbonate in the medium. The results indicate that ionic signals generated by growth factors and insulin, such as increases in intracellular pH or Na+, do not seem to be involved in the activation of S6 kinase. However, effects of growth factors or insulin on membrane potential and/or K+ fluxes and redistribution of intracellular Ca++ may play a role in the activation process. Furthermore, the mechanism of insulin activation of S6 kinase is distinct from the growth factors by its dependency on extracellular bicarbonate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.