Abstract
The role of extracellular calcium in the glycogenolytic effects of calcium-dependent hormones was examined in a rat liver perfusion system. Decreasing the perfusate CaCl2 concentration resulted in a concentration-dependent inhibition of glucose output by maximal concentrations of vasopressin (20 nM) and angiotensin II (10 nM), but not of glucagon (1.4 nM), cyclic AMP (100 microM), dibutyryl cyclic AMP (10 microM) or phenylephrine (5 microM). However, the effect of phenylephrine was inhibited when livers were perfused with CaCl2-free perfusate containing 0.5 mM EGTA in a duration-dependent manner. These effects were exerted through the inhibition of the maximal response of each hormone, and were associated with a parallel decrease in phosphorylase activation but not with changes in tissue cyclic AMP concentrations. When livers were preloaded with 45Ca for 45 min and then washed for either 15 min or 45 min, these hormones elicited a rapid and transient 45Ca efflux regardless of the perfusate calcium concentration. The sequential perfusion of two hormones resulted in the loss of 45Ca efflux by the second hormone. These results suggest that the glycogenolytic effects of vasopressin and angiotensin II depend on the extracellular calcium and that of phenylephrine primarily on the cellular calcium. It was also demonstrated that these calcium-dependent hormones mobilize calcium from the same pools. However, the mobilization of cellular calcium does not necessarily correlate directly with the glycogenolytic actions of vasopressin and angiotensin II.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.