Abstract

The force produced by muscles declines during prolonged activity and this decline arises largely from processes within the muscle. At a cellular level the reduced force could be caused by: (a) reduced intracellular calcium release during activity; (b) reduced sensitivity of the myofilaments to calcium; or (c) reduced maximal force development. Experiments involving intracellular calcium measurements in isolated single fibres show that all 3 of the above contribute to the decline of force during fatigue. Metabolic changes associated with fatigue are probably involved in each of the 3 factors. Thus the accumulation of phosphate and protons which occur during fatigue cause a reduction in calcium sensitivity and a decline in maximal force. The cause of the reduced intracellular calcium during contractions in fatigue is less clear. During prolonged tetani the conduction of the action potential in the T-tubules appears to fail leading to reduced intracellular calcium in the central part of the muscle fibre. However, during repeated tetani there is a uniform decline of intracellular calcium across the fibre and this remains one of the least understood processes which contribute to fatigue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call