Abstract
The unfolded protein response (UPR) plays a significant role in the maintenance of cellular homeostasis under endoplasmic reticulum (ER) stress, which is highly dependent on the regulation of defense-related phytohormones. In this study, the role of ethylene (ET) in ER stress and UPR was investigated in the leaves of intact tomato (Solanum lycopersicum) plants. Exogenous application of the ET precursor 1-aminocyclopropane-1-carboxylic acid not only resulted in higher ET emission from leaves but also increased the expression of the UPR marker gene SlBiP and the transcript levels of the ER stress sensor SlIRE1, as well as the levels of SlbZIP60, after 24 h in tomato leaves. Using ET receptor Never ripe (Nr) mutants, a significant role of ET in tunicamycin (Tm)-induced ER stress sensing and signaling was confirmed based on the changes in the expression levels of SlIRE1b and SlBiP. Furthermore, the analysis of other defense-related phytohormones showed that the Tm-induced ET can affect positively the levels of and response to salicylic acid. Additionally, it was found that nitric oxide production and lipid peroxidation, as well as the electrolyte leakage induced by Tm, is regulated by ET, whereas the levels of H2O2 and proteolytic activity seemed to be independent of ET under ER stress in the leaves of tomato plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.