Abstract

Parkinson’s disease (PD) is one of the most common neurodegenerative disease found in the aging population. Currently, many studies are being conducted to find a suitable and effective cure for PD, with an emphasis on the use of herbal plants.In this study, the neuroprotective effects of estrogen was evaluated in the 1-methyl-4-phe-nyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD with cognitive deficit and compared to Levodopa (LD), a well reported neuroprotective agent used for treating PD. Twenty-four Swiss albino mice were randomly divided into four groups: Control, MPTP, MPTP+LD and MPTP+estrogen. The behavioral recovery in both LD and estrogen treated mice were investigated using the rotarod, foot printing, narrow beam walking test and hanging tests. Non-motor behavioral recovery in both LD and estrogen treated were investigated using the Y-maze and Morris water maze. Furthermore, we performed the biochemical test i.e. catalase, lipid and nitrite in prefrontal cortex as well as nigrostriatal region of mouse brain. We also performed the acetylcholine esterase activity in prefrontal cortex and nigrostriatal region of mice brain. The recovery of dopamine neurons in the substantia nigra (SN) region was estimated by immunostaining of tyrosine hydroxylase (TH).Estrogen treatment restored all the deficits induced by MPTP more effectively than levodopa. Estrogen treatment recovered the number of TH-positive cells in both the SN region. Treatment with Estrogen significantly increased the levels of catalase, decreased the level of lipid and nitite in both region SN as well as prefrontal cortex region. Notably, the effect of estrogen was greater than that elicited by levodopa. Acetylcholine esterase activity was significantly increased in MPTP and it was found to be decreased by the treatment of estrogen as well as levodopa, although decrease in the activity was highly significant in estrogen treated group.Our result suggested that estrogen treatment significantly reduced the MPTP induced neurotoxicity as evident by decrease in oxidative damage, physiological abnormalities and immunohistochemical changes in the Parkinsonian mouse with cognitive deficit as compared to levodopa treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call