Abstract
Epithelial-to-mesenchymal transition (EMT) is a process that plays essential roles in development and wound healing that is characterized by loss of homotypic adhesion and cell polarity and increased invasion and migration. At the molecular level, EMT is characterized by loss of E-cadherin and increased expression of several transcriptional repressors of E-cadherin expression (Zeb-1, Zeb-2, Twist, Snail, and Slug). Early work established that loss of E-cadherin and increased expression of MMP-9 was associated with a poor clinical outcome in patients with urothelial tumors, suggesting that EMT might also be associated with bladder cancer progression and metastasis. More recently, we have used global gene expression profiling to characterize the molecular heterogeneity in human urothelial cancer cell lines (n = 20) and primary patient tumors, and unsupervised clustering analyses revealed that the cells naturally segregate into two discrete "epithelial" and "mesenchymal" subsets, the latter consisting entirely of muscle-invasive tumors. Importantly, sensitivity to inhibitors of the epidermal growth factor receptor (EGFR) or type-3 fibroblast growth factor receptor (FGFR3) was confined to the "epithelial" subset, and sensitivity to EGFR inhibitors could be reestablished by micro-RNA-mediated molecular reversal of EMT. The results suggest that EMT coordinately regulates drug resistance and muscle invasion/metastasis in urothelial cancer and is a dominant feature of overall cancer biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.