Abstract
2,3,7,8-Tetrachlorobenzo-p-dioxin (TCDD) exposure during embryonic gonadal sex determination had been demonstrated to harm the ovarian development. However, its mechanism was unclear and possibly related to epigenetic regulation. In the present study, the pregnant rats were treated with TCDD (100 ng/kg/day or 500 ng/kg/day) or only vehicle and corn oil on the day 8–14 of gestation through the gavage with a stainless-steel feeding needle. The vaginal opening time and estrous cycle of female offspring rats (F1) were monitored twice a day. The ovarian histology, follicle count, real-time PCR, Western Blotting and DNA methylation analysis for Igf2 and H19 were carried out. The results showed that maternal TCDD exposure disrupted estrous cyclicity, resulted in aberrant concentration of serum E2 and FSH, and affected the number of primordial follicles, secondary follicles and corpus luteum. However, TCDD had no effect on the number of primary follicles and atresia follicles. Furthermore, the mRAN expression of imprinted genes Igf2 and H19 was down-regulated, and the IGF2 protein was also down-regulated. TCDD exposure did not alter the mean methylation rate of Igf2 DMR2 and H19 ICR, and only some CpG sites throughout them were hypermethylated in high-dose TCDD rats. In conclusion, maternal exposure of TCDD could affect the ovary development and functions which were possibly associated with down-regulation expression of IGF2 and H19. However, it was not entirely clear whether the impairment of ovary by TCDD was related to the methylation pattern of Igf2 and H19 ICR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.