Abstract

Anthocyanins are a class of flavonoids having antioxidant and anti-inflammatory properties. They defend plants against various biotic and abiotic stresses and are synthesized by a specific branch of the flavonoid biosynthetic pathway. Different regulatory mechanisms have been found to regulate anthocyanin biosynthesis in plants. These include the MYB–bHLH–WDR (MBW) MBW trimeric complex consisting of bHLH, R2R3 MYB, and WD40 transcription factors. Epigenetic and Post-translational modification (PTMs) of MBW complex and various other transcription factors play important role in both plant developmental processes and modulating plant response to different environmental conditions. Recent studies have broadened our understanding of the role of various epigenetic (methylation and histone modification) and PTMs (phosphorylation, acetylation, ubiquitylation, sumoylation, etc.) mechanisms in regulating anthocyanin biosynthesis in plants. In this review, we are updating various epigenetic and PTMs modifications of various transcription factors which regulate anthocyanin biosynthesis in various plants. In addition to this, we have also briefly discussed in which direction future research on epigenetic and PTMs can be taken so that we can engineer medicinal plants for enhanced secondary metabolite biosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call