Abstract
Colonic mucosal wounds are repaired, in part, by epithelial migration. Signaling mechanisms regulating this migration are poorly characterized. This study aimed to examine the role that the epidermal growth factor (EGF) receptor (EGF-R) and its ligands, EGF and transforming growth factor-α (TGF-α), play in migration in wounded in vitro models of colonic epithelium. Migration was assessed over 24 h in circular wounds made in confluent monolayers of LIM1215 human colon cancer cells. EGF and TGF-α stimulated migration twofold from 4 h after wounding. Basal migration and the motogenic effects of short chain fatty acids and hepatocyte growth factor were mediated through enhanced binding of TGF-α to EGF-R, while trefoil peptide-mediated motogenesis required EGF-R activation independently of TGF-α binding. Activation of protein kinase C (PKC) stimulated migration, an effect more potent than, and independent of, EGF-R activation. However, neither inhibition of PKC by Ro 31-8220 nor depletion of PKC by pretreatement with phorbol myristate acetate attenuated EGF-R-mediated motogenesis. In conclusion, EGF-R activation via TGF-α binding, or intracellularly, mediates basal LIM1215 migration and the effects of several motogens, with the exception of PKC activators. Since EGF-R and PKC have physiological activators in vivo, they may control colonic mucosal repair processes following injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.