Abstract

BCR-ABL tyrosine kinase inhibitors (TKI), although highly effective in the treatment of chronic myelogenous leukemia (CML) patients, fail to eliminate leukemia stem cells (LSC), which remain a potential source of relapse. In previous studies we have shown that altered expression of inflammatory cytokines in the CML bone marrow (BM) microenvironment provides a selective growth advantage to CML compared with normal long term hematopoietic stem cells (LTHSC) (Cancer Cell 2012, 21:577). Our studies suggest an important role for the pivotal pro-inflammatory cytokine Interleukin-1α/β (IL-1α/β) in selectively promoting growth of CML LTHSC. Using a transgenic BCR-ABL mouse model of CML and human CML and normal CD34+CD38- cells, we showed that inhibition of IL-1 signaling using recombinant IL-1 receptor antagonist (IL-1RA) in combination with nilotinib (NIL) resulted in significantly greater inhibition of CML LSC, compared with NIL alone (Blood 2013, abstract 512). To further investigate the mechanisms underlying increased IL-1 sensitivity of CML stem cells, we evaluated expression of the IL-1 receptor components, IL-1 receptor-associated protein (IL-1RAP) and IL-1R1, on CML and normal stem cells using flow cytometry. Expression of both IL-1RAP and IL-1R1 were increased on primary CML CD34+CD38-CD90+ cells compared to their normal counterparts (n=5, p<0.05). Exposure to IL-1α (10ng/ml) resulted in increased expression of p-NF-kB (p65), p-p38 MAPK and p-JNK in CML compared to normal CD34+CD38-CD90+ cells as evaluated by flow cytometry, indicating enhanced sensitivity to IL-1 induced signaling (n=5, p<0.05). The expression of p-NF-kB(p65), p-p38 MAPK and p-JNK in CML CD34+CD38-CD90+ cells cultured in CML BM conditioned medium (CM) was reduced after treatment with NIL or IL-1RA, and further reduced by the combination of NIL and IL-1RA (n=4, p<0.05). Immunohistochemistry (IHC) analysis showed that nuclear NF-κB p65 protein was reduced in NIL and IL-1RA treated CML CD34+CD38-CD90+ cells compared with controls. Treatment with NIL and IL-1RA also significantly reduced expression of the NF-κB target genes NFκB1A, BCL2L1, BIRC3 and CD83 (n=6, p<0.001), and of the inflammatory cytokines IL6, CXCL1, CXCL2, CCL2, CCL3, CCL4 and TNF-α (n=6, p<0.05), as assessed by Q-RT-PCR. We evaluated IL-1 expression in BM samples from CML patients with undetectable minimal residual disease (UMRD) using Q-RT-PCR. Interestingly IL-1α, but not IL-1β, expression was increased in BM samples from CML patients with UMRD compared to normal BM samples (n=12, p<0.05). To evaluate the source of increased IL-1α expression we analyzed selected monocyte (CD45+CD14+), non-monocytic myeloid cell (CD45+CD14-CD33+), T cell (CD45+CD14-CD33-CD3+), B cell (CD45+CD14-CD33-CD19+), endothelial cell (CD45-GPA-CD31+) and mesenchymal cell (CD45-GPA-CD31-) populations from BM samples obtained from CML patients with UMRD and from normal healthy controls. These studies revealed significantly elevated IL-1α expression in BM CD14+ monocytic and CD31+ endothelial cells from CML patients with UMRD compared to normal controls (n=12, p<0.05). Our studies indicate that CML LSC demonstrate increased IL-1 receptor expression and IL-1 induced NF-kB, p38 MAPK and JNK signaling. We also observe enhanced IL-1α expression in BM endothelial and monocytic cells from CML patients achieving UMRD, indicating persistence of an inflammatory microenvironment that may contribute to persistence of residual LSC. Our studies provide a strong rationale for the application of anti-IL-1 directed strategies to inhibit inflammatory signaling and enhance LSC elimination in TKI treated CML patients. DisclosuresNo relevant conflicts of interest to declare.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call