Abstract

This article reviews data at the in vivo whole animal and human level. The importance of both flow and pressure recordings and of the methods used to record these variables is emphasized. Exogenous administration of endothelin-1 evokes a transient depressor response mediated by endothelial endothelinB receptors, but the predominate effect of endothelin-1 is a sustained increase in blood pressure resulting from increases in total peripheral resistance. Resistance in the superior mesenteric, renal, and hindquarter vascular beds of animals and forearm resistance in humans is increased. Both endothelinA and, to a lesser extent, endothelinB receptors on vascular smooth muscle mediate the increases in resistance. Endothelin-1 evokes decreases in the precapillary/postcapillary resistance ratio, resulting in increased capillary pressure and net transcapillary filtration. Endothelin-1 evokes increases in mean circulatory filling pressure in animals and in constriction of the human dorsal hand vein. This venoconstrictor activity is mediated primarily through endothelinA and to a lesser extent endothelinB receptors. Endogenously generated endothelin contributes to the hemodynamic effects of angiotensin and vasopressin in certain animal models of hypertension. Antagonists of endothelin evoke modest hemodynamic changes in healthy humans and in some healthy animals, and they decrease vascular resistance dramatically in several salt-sensitive rat models of hypertension and also in some hypertensive human subjects. Thus, endogenously generated ET appears to play a modest role in the healthy organism, but it likely plays a major role in many pathophysiological states as described in companion articles in this issue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call