Abstract

Rats were generated by pronuclear injection of the transgene with a cDNA construct encoding rat regucalcin that is a regulatory protein of Ca2+ signaling. Transgenic (TG) founders were fertile, transmitted the transgene at the expected frequency, and bred to homozygote. Western analysis of the cytosol prepared from the tissue of TG female rats (5-week-old) showed a remarkable expression of regucalcin (3.3 kDa) protein in the liver, kidney cortex, heart, lung, stomach, brain, spleen, muscle, colon, and duodenum. Regucalcin expression of TG male rats was seen in the liver, kidney cortex, heart, and lung. In wild-type (wt) male and female rats, regucalcin was mainly present in the liver and kidney cortex. Regucalcin inhibited protein phosphatase activity in rat kidney cortex cytosol and activated Ca2+-ATPase activity in rat heart muscle microsomes. The suppressive effect of regucalcin on protein phosphatase activity was significantly enhanced in the cytosol of kidney cortex of TG male and female rats as compared with those of wt rats. Likewise, heart muscle microsomal Ca2+-ATPase activity was significantly enhanced in TG rats. The changes in their enzyme's activities in TG rats were completely abolished in the presence of anti-regucalcin monoclonal antibody (100 ng/ml) in the enzyme reaction mixture. Moreover, the body weight of TG female rats was significantly lowered as compared with that of wt rats. Serum inorganic phosphorus concentration was significantly increased in TG male and female rats, while serum calcium, glucose, triglyceride, free cholesterol, albumin, and urea nitrogen concentrations were not significantly altered in TG rats. Regucalcin TG rats should be a useful model to define a regulatory role of endogenous regucalcin in the tissues in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.