Abstract

In the present study we sought to determine the contribution of endogenous brain stem angiotensin to renal sympathetic reflexes in conscious rabbits. Initial studies determined the subtype of receptor involved in the pressor response to angiotensin II (ANG II) administration into the fourth ventricle (4V). The AT1 antagonist losartan (0.001-10 micrograms 4V) had no effect on blood pressure alone but caused a dose-dependent blockade of the pressor effect of ANG II, with complete blockade produced by 10 micrograms, an effect that lasted for at least 3 h. The AT2 antagonist PD-123319 (0.1-1,000 micrograms) and vehicle had no effect on the ANG II pressor response. The effect of losartan (10 micrograms) on the baroreceptor, chemoreceptor, and trigeminal reflexes was examined in eight rabbits that had been implanted with 4V catheters and an electrode for recording renal sympathetic nerve activity (RSNA) 1 wk earlier. Baroreflex assessments were made during normoxia and two conditions of hypoxia (10% O2 and 10% O2 + 3% CO2) before and after 10 micrograms losartan or vehicle, on separate experimental days. During normoxia and hypoxia+CO2 losartan increased resting RSNA, the range, and upper plateau of the RSNA-MAP baroreflex curves. By contrast the marked increase in RSNA due to activation of trigeminal afferents was not affected by losartan. In conclusion the effect of losartan to increase RSNA activity in conscious rabbits, particularly during hypoxia and baroreceptor unloading, suggests that endogenous ANG II via AT1 receptors normally inhibits renal sympathetic baroreceptor and chemoreceptor reflexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call