Abstract
In hypertrophic scars, the differentiation and migration of fibroblasts are influenced by the extracellular matrix microenvironment, which includes factors such as stiffness, restraint, and tensile force. These mechanical stresses incite alterations in cell behavior, accompanied by cytoskeletal protein reorganization. However, the role of nucleo-skeletal proteins in this context remains underexplored. In this study, we use a polyacrylamide hydrogel (PAA) to simulate the mechanical stress experienced by cells in scar tissue and investigate the impact of Emerin on cell behavior. We utilize atomic force microscopy (AFM) and RNA interference technology to analyze cell differentiation, migration, and stiffness. Our findings reveal that rigid substrates and cellular restriction elevate Emerin expression and diminish differentiation. Conversely, reducing Emerin expression leads to attenuated cell differentiation, where stiffness and constraining factors exert no notable influence. Furthermore, a softening of cells and an enhanced migration rate are also markedly observed. These observations indicate that variations in nuclear skeletal proteins, prompted by diverse matrix microenvironments, play a pivotal role in the pathogenesis of hypertrophic scars (HSs). This research offers novel insights and a reference point for understanding scar fibrosis formation mechanisms and preventing fibrosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.