Abstract
A 4.6-ha urban stormwater treatment wetland complex in southwest Florida has been investigated for several years to understand its nutrient retention dynamics. This study investigates the role of aquatic vegetation, both submerged vegetation (such as benthic macrophytic and algal communities) and emergent plant communities, on changes in nutrient fluxes through the wetlands. Gross and net primary productivity of water column communities and net primary productivity of emergent macrophytes were used to estimate nutrient fluxes through vegetation in these wetlands using biannual biomass, nutrient concentrations of plant material, and areal coverage data. Emergent macrophyte net primary productivity was estimated as the difference between the increase of productivity during the wet season and the loss during the dry season which, in turn, suggested approximately 0.11g-N m− 2 y− 1 and 0.09g-P m− 2 yr− 2 being removed, primarily from the soil, by emergent vegetation. Water column primary productivity accounted for a much larger flux of nutrients with approximately 39.6g-N m− 2 yr− 1 and 2.4g-P m− 2 yr− 1 retained in algal communities. These fluxes, combined with measurements in parallel studies, allowed us to develop preliminary nutrient budgets for these wetlands and identify gaps, or missing fluxes, in our models for these wetlands. The results further validated previous findings that suggested that there are large inputs of nitrogen (up to 62.3g-N m− 2 yr− 1) that are not accounted for by the pumped inflow. Additionally, management suggestions are provided to improve water quality by identifying vegetative species that are most effective at retaining nutrients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.