Abstract

The role of the electrostatic double-layer interactions in adsorption of colloid particles at solid/liquid interface was reviewed. The phenomenological formulation of the governing PB equation was presented with the expressions for the pressure tensor enabling one to calculate forces, torques and interaction energies between particles in electrolyte solutions. Then, the limiting analytical results for an isolated double-layer (both spherical and planar) were discussed in relation to the effective surface potential concept. The range of validity of the approximate expression connecting the surface potential and the effective surface potential with surface charge for various electrolytes was estimated. The results for double-layer systems were next presented including the case of two planar double-layers and two dissimilar spherical particles. Limiting solutions for short and long distances as well as for low potentials (linear HHF model) were discussed. The approximate models for calculating interactions of spheres, i.e., the extended Derjaguin summation method and the linear superposition approach (LSA) were also introduced. The results stemming from these models were compared with the exact numerical solution obtained in bispherical coordinate system. Possibilities of describing interactions of nonspherical particles (e.g., spheroids) in terms of the Derjaguin and the equivalent sphere methods were pointed out. In further part of the review the role of these electrostatic interactions in adsorption of colloid particles was discussed. Theoretical predictions were presented enabling a quantitative determination of both the initial adsorption flux for low surface coverages and the surface blocking effects for larger surface coverages. Possibility of bilayer adsorption for dilute electrolytes was mentioned. The theoretical results concerning both the adsorption kinetics and structure formation were then confronted with experimental evidences obtained in the well-defined systems, e.g., the impinging-jet cells and the packed-bed columns of monodisperse spherical particles. The experiments proved that the initial adsorption flux was considerably increased in dilute electrolytes whereas the monolayer coverages were considerably decreased due to lateral interactions among particles. It was then concluded that the good agreement between experimental and theoretical data confirmed the thesis of an essential role of the electrostatic interactions in adsorption phenomena of colloid particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call