Abstract
We have revealed the underlying mechanism of the martensitic phase transition (MPT) in a new class of ferromagnetic shape memory alloys, Ni2Mn1+xSn1-x, by the combination of bulk-sensitive hard-x-ray photoelectron spectroscopy and a first-principles density-functional calculation. The Ni 3d e{g} state in the cubic phase systematically shifts towards the Fermi energy with an increase in the number of Mn atoms substituted in the Sn sites. An abrupt decrease of the intensity of the Ni 3d e{g} states upon MPT for x=0.36-0.42 has been observed in the vicinity of the Fermi level. The energy shift of the Ni 3d minority-spin e{g} state in the cubic phase originates from hybridization with the antiferromagnetically coupled Mn in the Sn site. Below the MPT temperature, the Ni 3d state splits into two levels located below and above the Fermi energy in order to achieve an energetically stable state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physical Review Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.