Abstract

AbstractPhase‐change memory (PCM) materials, such as chalcogenide alloys, have the ability for fast and reversible transition between their amorphous and crystalline states. Owing to the large optical/electrical contrast of the two states, PCM materials have been developed for data storage. It has been generally accepted that thermal effects, caused by laser irradiation or electrical pulses, control the amorphization by melting the sample and subsequent quenching, while crystallization is realized by thermal annealing. An important element that has not been considered extensively, however, is the role of electronic excitation by optical or electrical pulse. Strictly speaking, until electrons and holes recombine, the system under external stimulus is in a non‐equilibrium environment, especially when the excitation intensity is high. This raises an important question: can the excitation alone induce phase transition for PCM data storage without the usual thermal melting? Here, we will review the recent experimental and theoretical indications and evidence in support of the electronic excitation‐induced phase change in PCM materials and discuss potential ramifications of the athermal phase‐change phenomenon for data storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.