Abstract

Recently, sterically demanding N-heterocyclic cyclometalated ruthenium were reported as efficient Z-selective catalysts for cross-metathesis, showing a different reactivity in the function of the auxiliary ligand and the bulky ligand. To understand the origin of this behavior, we carried out density functional (M06-L) calculations to explore the reaction mechanism and insight from the energetic contributions into the determinant step. We emphasize the differences that occur when the 2,6-diisopropylphenyl (Dipp) and 2,6-diisopentylphenyl (Dipep) are employed. The results show that the barrier energies, ΔG‡, increase when the bulky ligand is greater, using nitrate as an auxiliary ligand, while the opposite behavior is obtained when pivalate is the auxiliary ligand. This tendency has its origin in the low reorganization energy and the less steric hindrance (%Vbur) obtained in catalysts that involve nitrate ligand and Dipep group. Moreover, by scrutinizing the energy decomposition analysis (EDA), it is found that the electronic contributions are also dominant and are not uniquely the steric effects that control the Z-selectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.