Abstract

SrRuO3 is a popular material extensively used as a bottom electrode in various applications, however, a few problems which will certainly change the interface band structure and greatly alter the device’s property are still not fully understood, such as the change of carrier types at a certain temperature and the quasiparticle scattering for non-Fermi liquid behavior below ferromagnetic transition temperature. In this study, magnetic, transport (electrical and thermal) properties and x-ray photoemission spectra have been used to understand the role of quasiparticle interactions in the SrRuO3 bulk system. At the Fermi level, the hybridization of Ru4dt2g ↓ and O2p bands form a typical two band system. In order to explain the problems as mentioned, our present work reveals that there must be an impurity band that couples with the bands around Fermi level and serves as a charge reservoir. In the present case, the impurity is attributed to the Ru vacancies. As a result, the conduction electrons scatter strongly with the Ru vacancies and couple with the Ru magnons to give rise to a dominant electron-magnon coupling that overwhelms the electron-phonon coupling in the temperature range of 90–150 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.